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I .  Phys. A Math. Gen. 27 (1994) 67996805. Printed in the UK 

The exponential map for the unitary group Si7 (2,2) 

A 0 Barut, J R %nit§ and A Lauferts 
Physics Department, University of Colorado, Boulder, CO 80.309-390, USA 

Received 21 June 1994 

Abstract. In this article, we extend our previous results for the orthogonal group SO(2.4) to 
its homomorphic group SU(2.2).  Here we present a closed fiNte formula for the exponential 
of a 4 x 4 traceless matrix, which can be viewed as the generator (Lie algebra elements) of the 
SL(4, C) group. We apply this result tn the SU(2,2)  group, Ihe Lie algebra of which can be 
represented by Dirac matrices, and discuss how the exponential map for S U ( 2  2) can be wriaen 
by means of D i m  mahices. 

1. Introduction 

In a previous paper (Barut, Zeni and Laufer 1994), the present authors obtained a closed 
finite formula for the exponential which maps the Lie algebra into the defining representation 
of orthogonal groups and, in particular, for S0+(2,4) group. This result is a generalization 
of the well known and important formulae for the SO(3) group (Barut 1980) and the 
analogous result for the Lorentz group SO+(], 3) (Zeni and Rodrigues 1990). 

The present article deals with the exponential which maps the Lie algebra into the 
defining representation of the SU(2 ,2 )  group, which is the covering group of the S0+(2,4)  
group. The result presented here can be viewed as a generalization of the recent result to 
the SL(2 ,  C) group (Zeni and Rodrigues 1992) 

e’ = coshz+ Fsinhz (1.1) 

where F = (el + ibj)q is a complex vector expanded in the Pauli mahices, the complex 
variable z is such that z2 = F 2  and F = F / z .  We remark that the above result contains the 
particular case of the SU(2)  group when et = 0. 

The group SU(2 .2 )  and its homomorphic group SO+(& 4) has several applications in 
theoretical physics (Barut and Brittin 1971). For instance, it is the largest group that leaves 
the Maxwell equations invariant (Bateman 1910); from its subpups  SO(3) and SO(2, I), 
we can obtain the whole spectrum of the hydrogen atom as predicted by Schriidinger theory 
(Barut 1972); and more recently it has been used in spin-gauge theories in an attempt to 
generalize the minimal coupling (Barut and McEwan 1984, Chisholm and Farwell 1989, 
Dehnen and Ghaboussi 1986). 

Also, the unitary groups play an important role in quantum mechanics (Barut and 
Raczcka 1986) and we can find in the literature several articles dealing with the 
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parametrizations of these groups (see Barnes and Delbourgo (1972) and references therein). 
For instance, Bincer (1990) presents a parametrization for the exponential through a set 
of orthonormal vectors that must be computed from the diagonal form of the matrix. We 
remark that, if one uses our method to obtain the exponential (Barut et al 1994), we need 
only compute the eigenvalues of the matrix; no further computations are involved, such as 
the eigenvectors. 

We remark that, besides its application in group theory, the exponential of a matrix has 
an important application in the solution of a system of differential equations, as discussed 
in Barut er a1 (1994), so the method developed in our present and previous papers can 
be useful for this study. A comprehensive review of methods to exponentiate an arbitrary 
matrix is given in Moler and van Loan (1978) and references therein. 

The plan of the present paper is as follows. In section 2, we obtain the exponential of a 
4 x 4 traceless matrix; in section 3, we discuss some particular cases of that exponential; in 
section 4, we study the representation of the exponential in the Dirac algebra, in particular, 
the cases when the generator is either the sum of a vector and an axial vector, or a bivector; 
in section 5 ,  we make our final comments. 

A 0 Barut er a1 

2. The exponential of a 4 x 4 traceless matrix 

The method presented previously by the authors (Ba t  er a1 1994) can be straightforwardly 
generalized to exponentiate any given matrix. Basically, the algorithm presented was based 
on the Hamilton-Cayley theorem and emphasizes that the exponential must be written 
by means of the eigenvalues. Also remarkable is the use of the (square-root) discriminant, 
related to the characteristic equation of the matrix, as a multiplier to simplify the expressions 
of the coefficients that appear in the recurrence relation. Finally, we analyse the coefficients, 
examining each eigenvalue separately. 

We are going to apply the above algorithm to the generators of SL(4, C). We mal l  
that the Lie algebra of SL(n,  C) is defined by 

sl(n,  C) = {H E C(n)  such that eH E SL(n,  C)) (2.1 ) 

where C(n)  is the space of n x n complex matrices. 
Therefore, the generators of S L ( n ,  C) are traceless, since we have deteX = eTrH. 
From now on we restrict ourselves to 4 x 4 matrices. 
The characteristic equation of a 4 x 4 matrix is given by 

det(H - A I )  = h4 - doh3 - aoAz - bok -CO 

= ( A  - w ) ( A  - x ) ( A  - y ) ( A -  Z) = 0 (2.2) 

where w ,  x ,  y and z are the eigenvalues. 

sum of the eigenvalues vanishes 
The matrices representing the generators of S L ( 4 ,  C) are traceless, so, in this case, the 

do = w + x + y + z = TrH = 0. (2.3) 
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2.1. The recurrence relations 

The Cayley-Hamilton theorem says that a matrix satisfies a matrix equation identical to its 
characteristic equation and, therefore, we can write all higher powers of H in terms of the 
first powers (Barut er a1 1994) 

H(*i) = d i H 3 + a , H Z + b i H + c i .  (2.4) 

So the series for eH becomes a series in the coefficients of the above equation. Multiplying 
the recurrence relation, equation (2.4). by H, and using the Hmilton-Cayley theorem 
related to equation ( 2 4 ,  one obtains recurrence relations for the coefficients, which hold 
for i 2 0 

ai+] =b i+d iao  bit, = c i + d ; b ~  ci+l = d;co di+l = a i .  (2.5) 

From the above relations we can also show that (i 2 2) 

aitz =aiao+ai-lbo+ai-zco. (2.6) 

In the next step, as outlined in Barut et a1 (1994), we introduce the square-root of the 

(2.7) 

We write the first coefficients, ao, bo and CO by means of the eigenvalues, according to 
equation (2.2). and from equation (2.6). we find that the general term for the coefficients 
ai, multiplied by m, is given by (i 2 0) 

mai = t(w. y. (2.8) 

where we have made use of the alternating t ( w ,  y. z) function of three variables 

discriminant of equation (2.2), indicated hereafter by m: 

m = (w - x ) ( w  - y)(w - z ) (x  - y)(x - z)(y - z). 

+ t ( x ,  w ,  z)y5+' + t(w, x ,  y)z5+' + t ( y . x ,  z)w5+' 

t ( W ,  Y, z) = (w - Y)(Y - z)(z - tu). (2.9) 

Now, based on equation (2.8), the series for the coefficients can be summed easily since we 
can write the other coefficients by means of ai, according to equation (2.5). For instance 

(2.10) bit! = ai-zco + ai-[bo. 

In order to write down the exponential, it is convenient to introduce the symmetric s (w.  y. z) 
function in three variables and the product of the symmetric and alternating functions, 
indicated hereafter by s t (w,  y, z) 

S t ( W ,  y, z) = s(w, y, z)t(w, y. z). (2.11) s (w ,  Y. z) = WY + wz + YZ 

2.2. The closed,futite formula for the exponential of a 4 x 4 traceless matrix 

ex er 9 
X Y Z 

t (w ,  y. 2)- + t ( x ,  w ,  z)- + t ( w , x ,  y)- + t(y, x ,  

+ ( s t (w,  y. z)e" + s t ( x ,  w ,  z)eY + s t (w,  x ,  y)e' + sr(y,x, z)eW)H 

+ (xt(w.~,z)e '+yt(x,  w , z ) e Y + z t ( w , x , y ) e ' + w t ( y , x , z ) e " ) ~ Z  
+(t(w,y,z)eX +t(x,w,z)eY + t ( w , x , y ) e z + t ( y , x , z ) e W ) H 3 .  (2.12) 
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3. Some special cases of the exponential 

3.1. The case when bo = 0 

Now we are going to see that the above formula for the exponential simplifies considerably 
in the case when the characteristic equation for H,  equation (2.2), has no term in the first 
power, i.e. bo = 0. In this case, the recurrence relations, equation (2.4), for the even (odd) 
powers involves only the even (odd) powers. 

If bo = 0 we have a quadratic equation in the square of the eigenvalue of H, so 
we can set w = -x  and z = -y and work with only two eigenvalues, x and y .  The 
Hamilton-Cayley theorem, related to equation (2.2), becomes 

H4 - (x2 + y2)H2 + x2y2 = 0. 

A 0 Barut et ul 

(3.1) 

The square-root of the discriminant m, equation (2.7). reduces in this case to 

m = -4xy(x2 - y’)’. (3.2) 

Therefore, the series for eH,  equation (2.12), in the case when bo = 0, is given by 

eH = H 
X’ cosh y - y’ cosh x 

x2 - 2 

coshx - Cosh y x 3  sinh y - y3 sinhx 
1+ x 2 -  2 H Z  + xy(x2 - y2) Y Y 

ysinhx -xsinhy + H 3 .  
XY(X2 - Y2) 

(3.3) 

3.2. Further simplifcationr: the care when H 2  = x21 

In this case, the square of the generator can be identified with the square of one eigenvalue, 
say x ,  which is a particular situation of the Hamilton-Cayley equation given above, 
equation (3.1). Examples include the important cases when the generator is either a vector 
(or axial vector) or a bivector from Dirac algebra. This last case is just the Lorentz group. 

Therefore, substituting for H2 = x2 in equation (3.3), we obtain 

sinhx 
eH = coshx + - H ,  

X 
(3.4) 

This is the formula given in Zeni and Rodrigues (1992) for the exponential of the 
generators of the Lorentz group. We remark that Zeni and Rodrigues (1992) proved in a 
very simple way that every proper and orthochronous Lorentz transformation can be written 
as the exponential of some generator. 

4. The SU (2,Z) group and Dirac algebra 

We recall that the Lie algebra of the S U ( 2 , 2 )  group is defined by Kihlberg et a1 (1966) 

su(2,2) = {H E C(4) such that H i p  = -pH] (4.1) 

with @ = diag(1, 1, -1, -1). 
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Also, the matrix algebra C(4) is isomorphic to the Dirac algebra and, therefore, the 

The s t d a r d  representation for the Dirac matrices is given by 
generators of SCJ(2.2) can be represented by an appropriate set of Dirac matrices. 

where i E 11.31 and we set ys = my1 y z ~  so its square is negative, i.e. y: = -1 and it is 
skew-Hermitian. 

A general element of the Lie algebra of SU(2,2) can be written as follows 

H = i V  + F + y5A + icy5 = iu"y, + F " y , ,  + ysa*y, + icys (4.3) 

where y,,, = y,,yv, p 4 U, p,  v E [0,3]. The components U,, F " ,  a, and c are real 
numbers. 

4.1. Vector ( H  = iV) or axial vector (H = ysA) 

In this case, the square of the generator is a real number 

the eigenvalues present in equation (3.1) are equal to each other, i.e. we have x z  = y2. 

V can be length-like (Vz = 0). space-like (V2 c 0) or time-like (V2 > 0). 

4.2. Bivector ( H  = F )  

The square of a bivector in the Dirac algebra can be f o m l l y  identified with a complex 
number, which is one of the eigenvalues, say x .  The other eigenvalue y is related to x by 
complex conjugation. The imaginary unit is represented by y5. 

The previous formula for the exponential of H ,  equation (3.4). holds in every case, i.e. 

Let us write the bivector as follows 

F = Fpyy , ,  = (e' + y5b')yio. (4.5) 

In the latter form, it is easy to compute the square of F (Zeni and Rodrigues 1992) 

F2 = e2 - b2 + 2yse * b. (4.6) 

From the above equation, we can deduce the explicit form of the Hamilton-Cayley theorem 
and in this case 

F 4  - 2(eZ - bZ)FZ + 4(e . b)' + (e2 - b2)' = 0. (4.7) 

If we compare equation (4.7) with equation (3.1), we find that the eigenvalues are 

(4.8) 

Observe that the expression for x is the same expression as that for FZ. We have only to 
replace the imaginary unit for y5. Therefore, equation (3.4) applies to the exponential of a 
bivector. 

given by 

x 2  = e' - bz + 2ie. b y z  = e' - bz - 2ie. b. 
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4.3. The sum of a vector and an axial vector (H = W = iV + yjA) 
In this case, we are going to show that the fourth power of the generator can be written by 
means of the second power and the identity and, therefore, equation (3.3) applies for the 
exponential of a V-A generator. Also, we obtain an explicit expression for the second and 
third power by means of V and A, equation (4.16). which can further simplify computations 
with the exponential, equation (3.3). 

A 0 Barut et a1 

From now on, we indicate that W = N for the generator, so we have 

W = iV + y5A = (iVp + y5A')y'. (4.9) 
Computing the second and fourth power of W, we find 

W z  = A2 - V2 + iys(AV - VA) (4.10) 

W 4  = 2(A2 - V2)W2 + 4(A V)* - (A2 + V2)' (4.1 1) 

Therefore, a V-A generator satisfies equation (3.1) and can be exponentiated as in 
equation (3.3). 

Observe that if V = A, i.e. W = ( I  + n)V, it implies W2 = 0 and ew = 1 + W .  
We introduce A V as the inner pmduct in the Dirac algebra (also V2 = V V)  

V A = i ( V A  + AV) = uCap, 

Wealsoremarkthat (AV-VA)' = ~ ( A O V ) ~ - ~ A ~ V ~ ~ A .  If wecompareequation(4.11) 
with equation (3.l), we see that the eigenvalues are given by 

x 2  = A 2 -  Vz + f i  y2 = A ' -  V 2 -  fi, (4.12) 

To get a convenient expression for the third power of W ,  we introduce a new element 

(4.13) 
The products WW* and W'W will be called here bicomplex numbers, i.e. we now have 
two imaginary commutative units, ys and i. Moreover, the above products are related to 
each other through complex conjugation respective to y5, i.e. we have 

W*,  defined by 

W" = A + iy5V. 

U def WW" = 2iA V + (A2+ V2)y5 

li E W " W  = 2iA V - (A2 + V2)y5. 
(4.14) 

It is remarkable that the product d = liu is a real number, which is just the determinant 
of H = W in the matrix representation (cf equation (4.11) above) 

(4.15) 

Based on equation (4.15), we obtain the inverse of W (when there is an inverse, i.e. uli # 0)  
as 

uli = Qu = -4(A V)' + (Az + V2)'. 

(4.16) 

To verify that the above expression just defines the bilateral inverse, we call attention to 
the fact that ys anticommutes with W ,  so we have liW = Wu.  

Now considering that W 3  = W4W-',  it follows from equations (4.11) and (4.16) that 
the third power of W is given (if liu f 0) by 

(4.17) 

which is easily expressed by means of the Dirac matrices through equations (4.9) and (4.13). 

W 3  = 2(A2 - V2)W - W"r7 
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5. Conclusions 

In this article we presented a finite closed formula for the exponential of a 4 x 4 traceless 
matrix, equation (2.12). It can be viewed as the exponential of a generator of the SL(4, C) 
group, which includes the SU(2,2) group as a subgroup. Our approach in obtaining 
the exponential is based on our previous work (Bmt  et al 1994). Equation (2.12) is a 
generalization of the exponential for generators of the SL(2, C) group presented in Zeni 
and Rodrigues (1992). 

The finite formula for the exponential, equation (2.12). involves only the computations 
of the eigenvalues and the first three powers of the matrix, no further computations (e.g. 
eigenvectors) are needed to obtain the exponential (cf Moler and van Loan 1978). 

We have also presented some special cases of this exponential, equations (3.3) and 
(3.4). They include the important cases when the generator of the SU(2.2) group is 
identified either with a bivector or the sum of a vector and an axial vector, as discussed in 
section 4. For both cases, we give explicit expressions for the eigenvalues of the generators, 
equations (4.8) and (4.12), as derived from Dm algebra. Moreover, in the case of a V-A 
generator, we obtained a simple expression for the third power of the generator by means of 
V and A,  equation (4.17), which is needed to exponentiate the generator (see equation (3.3)). 
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